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In this paper, we compare observations of thunderstorms made with two

radars operating at different wavelengths of 70 cm and 5.67 m. The first set of

observations was made with the UHF radar at the Arecibo Observatory in Puerto

Rico, and the second set was made with the Max-Planck-Institut fur Aeronomie

VHF radar in the Harz Mountains in West Germany. Both sets of observations

show large echo strengths in the convective region above the -10°C isotherm.

At UHF, precipitation echoes dominate. At VHF, there appears to be a contri-

bution from both the precipitation echoes and the normal echoes due to scatter

from turbulent variations in the refractive index.

A number of simple theories can be used to calculate the relative

contributions of radar scatter from "clear air" and from precipitation in a

cloudy atmosphere as a function of frequency (see, e.g., BATTAN, 1973). The

theoretical predictions indicate a wavelength to the -4 power law dependence

for scatter from raindrops. GOSSARD and STRAUCH (1981) have labeled this

"incoherent scatter", and the scatter from turbulent variations in the

refractive index has been called coherent Bragg scatter. The latter is

expected to vary as the wavelength to the 1/3 power. Additionally, strong

Fresnel scatter or reflection due to refractive index stratification has been

found at VHF (e.g., ROTTGER, 1980b). However, the exact wavelength dependence

of the reflective process is not known. The few detailed studies of the

scatter from clouds at lower frequencies such as UHF and VHF have shown the

echo strengths to he larger than expected, based on the theoretical predic-

tions. Examples of such observations are given by SMITH (1964), NAITO and

ATLAS (1966), CHERNIKOV (1968), GAGE et al. (1978), and GRE_ et al. (1978).

The most detailed discussion of the problem has been given by GOSSARD (1979)

and GOSSARD and STRAUCH (1981).

Some of the earlier explanations of the enhanced reflectivities dealt with

a possible organization of the precipitation on a scale comparable to half the

radar wavelength due to turbulent motions within the cloud. Thus, the

reflected radar signal would have both a coherent and an incoherent component.

GOSSARD (1979) used results from a numerical cloud model developed by CLARK and

HALL (1979) to improve the estimates of the dielectric fluctuations caused by

water vapor and raindrop spectrum variations within the cloud. He concluded

that, for reasonable values of the various parsmeters, organization of the

precipitation by turbulent motions could not account for the observations.

However, the variations of the thermodynamic variables and the coupling to the

water vapor densities through nonlinear dynamics could produce significantly
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enhanced cloud reflectivities, although the calculated enhancements were

still too small to explain the observations.

GOSSARD and STRAUCH (1981) used experimental data from an FM-Od radar to

study the contributions from "incoherent scatter" and '_Bragg scatter" in

winter clouds in Colorado. Their results showed no significant departure from

the classical predictions, but they could not conclude anything about the

stronger summertime convective storms. Also, they suggested that some of the

enhancements in reflectivity that have been reported in the literature could be

associated with entrairnnent and mixing of dry air near the edges of the cloud.

So little data exists and, with the exception of the work by GOSSARD

(1979), little has beem done to improve the theory of scattering from clouds at

long wavelengths. Since the theory of scattering from clouds at long

wavelengths is uncertain, it is particularly important to have as much

observatior_l data as possible taken with different instruments. In this

article, we will present data from two separate thunderstorm observations made

in the Stmuner of 1978 and in the Fall of 1979. The first experiment was

carried out with the SOUSY VHF radar located in the Harz Mountains in West

Germany and operating at a frequency of 53.5 MHz. The second experiment was

carried out with the 430-MHz Arecibo Observatory radar located in Puerto Rico.

Although the observations were made in different parts of the world, in

different climates, with different radars operating at different frequencies,

there are significant similarities. Also, this comparison of the scatter at

wavelengths of 70 cm and 5.67 m from cumulus clouds is the only such comparison

of which we are aware.

THE SOUSY VHF RADAR OBSERVATIONS

The SOUSY VHF radar is operated by the Max-Planck-Instltut fur Aeronomie

and is located in the Harz Mountains near Bad Lauterberg. The radar frequency

corresponds to a wavelength of 5.67 m, and the nomlnal height resolutlon is 150

m (see, e.g., ROTTGER, 1980a). The radar was operated during the early part of

June 1978, when the flow over western Europe was characterized by a stable,

anticyclonic air mass. On June 1 and 2, air mass thunderstorms developed, and

some were reported near the radar site. In the evening of June 2, 1978, data

were obtained after 1851 GMT, and, for almost two hours, a thunderstorm was

immediately over or near the radar's location. ROTTGER (1980a,b) has

described the experiment in greater detail.

The vertical velocities measured by the vertically pointing radar for the

period from 1851 GMT until 2040 GMT on June 2, 1978, are summarized in Figure 1

(local Middle European Time is GMT minus one hour). The shaded areas indicate

upward velocities, and the contour intervals are I m/s. The dark, solid bars

show the times and ranges at which radar echoes from lightning were detected.

A detailed discussion of these echoes is outside the scope of this paper, but

we assume that they are likely due to scattering from the ionized lightning

channel, although Bragg scattering from acoustic waves may occur, too. The

lower part of the figure shows the measured mean pressure changes at the site

and a subjective estimate of the rainfall intensity as a function of time. The

thunderstorm symbol indicates the presence of lightning, and the open circle

shows a period of clear sky overhead.

In Figure 2 we show the mean quasi-vertical velocity w, the echo power P

ar_the rms velocity fluctuations o during the final period from 2011-2041

GMT. The effective reflectivity, _ue to scattering from turbulent refractivity

variations and partial reflection from coherent discontinuities in the

refractivity, is proportional to the power P multiplied by the square of the

range. It is normally a measure of the temperature and humidity variations

in the radar volume. Note that an uplift of the reflectivity pattern from
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Figure 1.

about 7.5 to 10.5 km occurs within a 10-minute period at the beginning of the

period shown in the figure. The reflectivity pattern then remains nearly

stationary in height after about 2025 GMT. The behavior of the echoes is

consistent with the vertical development of the thundercloud until it reached

the height of the tropopause at 10.5 kin, if we assume that the gray-shaded

region represents the thundercloud region. Two indications support this

assumption: (1) the high reflectivity band above 10.5 km at 2011 GMT

presumably is the radar-detected tropopause (e.g., ROTTGER, 1980b), and (2)

lightning echoes, which originate within the cloud, are detected only within

the gray-shaded region. The final uplift of the high reflectivity regions in

the tropopause level is connected with mean upward velocities of s_e meters

per second. The strongest turbulence, viz., regions of large rms fluctuations

in velocity, occurs in and above the regions of strong upward velocities.

A more detailed analysis of the Doppler spectra shows that, in addition to

the relatively small upward velocities, sometimes large downward velocities

occur simultaneously. Figure 3 shows 12 consecutive vertical velocity profiles

obtained at 2-minute intervals with the SOUSY VHF radar. Actually, the figure

represents gray-scale plots of the Doppler spectra as a function of range gate.

The darker impressions indicate stronger signal strengths. The spectra for

each range gate are normalized to their peak value. Thus, the extent to which

the noise is suppressed is an indication of the signal-to-noise ratio.

Each profile shows a small fluctuating vertical wind component with an

amplitude no greater than a few m/s over the altitude range from 3.0 to 12.0

kin. However, before 1900 GMT, while the thunderstorm is above the radar,

there are secondary peaks in the Doppler spectra between 2.5 and 9.0-kin

altitude. The secondary maxima have associated velocities between a few m/s at

the upper end of the altitude range and 10-12 m/s at the lower end. The power

associated with the secondary echoes has a maximum value of more than 10 dB

above the noise level and is comparable in magnitude to the "clear air" or

"small velocity" echoes which are seen to persist after the cloud has passed

out of the radar beam. Around 7.5 km altitude at 1851 GMT, the secondary peak

is even stronger than the small velocity part of the spectrum, as shown by its

suppression resulting from the normalization. The height range where the

secondary echoes occur is above the -20°C isotherm as determined from the
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Hannover radiosonde data which were taken some 100kmnorthwest of the radar

site at 1200 GMT.

Double peaked spectra of VHF radar echoes from a large cumulus cloud were

also reported by GREEN et al. (1978). They found it difficult to interpret

these double peaks, although they t_atatively concluded that an updraft and a

downdraft existed simultsneously within the radar volume. They interpreted the

secondary echo as being from precipitation but found that the measured

reflectivities were too large by an order of magnitude.

430-MHz THUNDERSTORM OBSERVATIONS AT ARECIBO

The experiment at Arecibo was carried out in September of 1979 using the

430-MHz radar at the Arecibo Observatory. The radar frequency corresponds to a

wavelength of 70 cm. The radar is steerable within an angular range less than

20 ° off vertical, but during the experiment, the beam was pointed vertically

during the entire observation period. At the beginning of the experiment, the

intertropical convergence zone (ITCZ) was located unusually far north. A wave

disturbance in the easterly flow passed over the island on September 13 and 14,

1979, and organized the convection that developed over the island due to the

strong diurnal heating cycle. On September 14, there was thunderstorm activity

over the radar from 1430 AST until 1750 AST. LARSEN et al. (1982) have

described the experiment and some of the earlier results in greater detail.

The radar reflectivities are shown in Figure 4 for the period from 1430 to

1730 AST. No renormalization of the power for range-square dependence is

necessary since the near-field (Fresnel region) for the Arecibo 430-MHz radar

extends out to more than 100 km altitude. The Arecibo 430-MHz radar thus

illuminates in the troposphere and stratosphere, a region with a horizontal

diameter equal to the 305-m diameter of the dish antenna. As in Figure 2,

Figure 4 clearly shows the cross section of a cumulus cloud, including the
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Figure4.

1640

anvil near the tropopause at the end of the afternoon. It is unusual to have

such a long-lived thunderstorm, but in this case the combined effects of the

easterly wave, the local topography, and the heating contrast between the land

and the ocean must have produced favorable conditions for maintaining the cloud

in a nearly statior_ry position. Care has to be taken in interpreting the data

because the radar was not scanning during the experiment. Therefore, Figure

4 shows effects due to both advection of the cloud over the radar and the

temporal evolution of the cloud in the course of the afternoon, just as in

Figure 2.

Figure 5 shows a sample of five consecutive profiles of the vertical

velocities measured with the radar. The vertical and horizontal axes are the

same as in Figure 3, but the power is shown in contours rather than as a gray-

scale plot. The contour interval is 3 dB. The echoes in the troposphere are

very broad, and "x's" have been used to indicate the locations of the maxima in

the power spectra. Typically, the echoes in the troposphere would have

approximately the same width as the echoes seen in the region above the

tropopause near 15 km.

The vertical velocity profiles observed at Arecibo once the cloud was

overhead are very similar to the vertical profiles for the "precipitation"

echoes observed with the SOUSY VHF radar. The echoes have small velocities

near the tropopause and become more negative toward lower altitudes. In this

case, the downward velocities attain magnitudes as large as 8 m/s. Note that

around 7-8 km the measured Doppler shift is so large that the velocities become

aliased and appear as large positive velocities. Data cannot be obtained below

an altitude of 5.7 km due to the receiver protection system for the 430-_z

radar. Therefore, we do not know if the downward velocities become larger at

lower altitudes.

In the Arecibo data set, there is no evidence of a "low velocity" signal

from the "clear air", as there is in the SOUSY VHF radar data taken at a longer
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wavelength. We have examined the Doppler spectra from the UHF radar in detail,

and there is no evidence of a double peak. Of course, that may not be

surprising since the echo strength of the signals shown in Figure 5 are of the

order of 60 dB. The difference in the signal strength just above the tropo-

pause near 15 km and the signals in the cloud just below the tropopause is

approximately 30 dB at UHF but only 10 clB at VHF. The signal strength

increases further by another 30 dB before it attains maximum values near 10-kin

altitude. The radiosonde ascent from Sen Juan, located 80 km east-northeast

from the Arecibo radar, showed that the a-,osphere was conditionally unstable

from ground level to the height of the tropopause, and the lowest height where

data were obtained with the radar corresponded to a temperature of -10°C. The

temperature decreased further to -20°C at 400 mb or 7.6-kin altitude.

Therefore, we do not expect much liquld precipitation or liquid cloud droplets

in the height range of the radar measurements.

Figure 4 shows that the echoes attain their largest magnitude near the

center of the cloud and taper off at the edges. Therefore, the enhancements

cannot be due to large refractivity gradients created by mixing of dry and

cloudy air near the outside of the cloud. The largest magnitudes occur in what

is typically the updraft region of the cloud, the right half of Figure 4, while

somewhat less intense echoes occur in the region usually associated with

downdrafts, the left half of Figure 4. The same is also true for the VHF

observations as shown in the middle frame of Figure 2.

GRAVITY WAVES G_ERATED BY THE STORMS

Both the SOUSY VHF radar observations and the Arecibo observations show

that gravity waves were generated by the convection once the upward development

reached the height of the transition from the unstable lapse rate in the

troposphere to the stable lapse rates in the lower stratosphere (ROTTGER,

1980b_ LARSEN et al., 1982). The grevity-wave motions are evident in the

sample profiles shown in Figures 3 and 5. In Figure 5, the downward phase

progression of the waves can be seen in the altitude range from 15 to 22 kin.

The downward phase progression implies upward group velocity for a packet of

gravity waves. Figure 1 also shows some evidence of downward phase progression

in the altitude range between 10 and 13 km as can be seem in the tilt of the

helght/time contours of the vertical velocities.

DISCUSSION

In all, there are a number of similarities between the two data sets in

spite of the differences in the conditions and locations used for the

observations. Both radars detect a "precipitation" echo that shows vertical

velocities close to zero near the tropopause and increasing negative velocities

at lower heights. The VHF radar also detects the clear-air component of the

vertical motion. Finally, both sets of radar observations showed that gravity

waves were generated in the 1 ower stratosphere in connection with the cumulus

convection.
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